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Optimized random-phase approximations for arbitrary reference systems:
Extremum conditions and thermodynamic consistence
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The optimized random-phase approximation~ORPA! for classical liquids is reexamined in the framework of
the generating functional approach to the integral equations. We show that the two main variants of the
approximation correspond to the addition of the same correction to two different first order approximations of
the homogeneous liquid free energy. Furthermore, we show that it is possible to consistently use the ORPA
with arbitrary reference systems described by continuous potentials and that the same approximation is equiva-
lent to a particular extremum condition for the corresponding generating functional. Finally, it is possible to
enforce the thermodynamic consistence between the thermal and the virial route to the equation of state by
requiring the global extremum condition on the generating functional.@S1063-651X~97!05612-2#

PACS number~s!: 61.20.Gy
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I. INTRODUCTION

The optimized random-phase approximation~ORPA! @1#
for classical liquids has been extensively used in the
decades to obtain information on the structure and, to a
nor extent, on the thermodynamics of simple liquids a
mostly liquid metals@1–6#. The approximation was origi
nally developed in the context of the perturbative appro
to the thermodynamic and structure of simple liquids@1#.
More recently, this approximation has been used as an in
dient for studying liquids in porous media@7# and critical
phenomena in simple liquids@8#. The standard implementa
tion of ORPA is based on the splitting of the interpartic
potential into a repulsive~reference! and an attractive~per-
turbation! part. The effect of the attraction on the pair corr
lation functions of the purely repulsive reference system
treated at the level of the random-phase approxima
~RPA! at large distances and by enforcing the excluded v
ume effect at short distances.

Numerical studies have shown that the ORPA yield
very accurate description of the structure factor and ther
dynamics of simple fluids. At present, for simple liquids, t
quality of the ORPA results is comparable to that of sta
of-the-art calculations based on the modified hyperne
chain ~MHNC! approximation@9,10# or other modern inte-
gral equations like the HMSA@11#.

Usually, the reference system is modeled by hard sph
interactions. However, in some cases, either the nature o
interactions or results from other theoretical approaches
571063-651X/98/57~1!/460~5!/$15.00
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dicate that a soft reference system could provide a be
reference system for the ORPA. The original derivation
the ORPA does not allow a direct extension of the formu
to the case of a reference system interacting without h
core. A nonstandard implementation for liquid alkali meta
using a one component plasma as reference system@6#, al-
though providing good results, was not general enough
was subject to some criticisms@12#.

More recently, motivated by the need of improving som
variational calculations for liquid metals@13#, we reviewed
the ORPA from the computational as well from the theor
ical point of view. In a previous paper@14#, we showed that
the solution of the ORPA equations is unique and we p
posed a robust, accurate and efficient numerical algorithm
solve the equations. In the present paper we address
problem of reformulating the theory in order to deal in
consistent way with continuous reference systems with
any intermediate introduction of auxiliary hard-sphere s
tems @1#. We give a solution to this problem in the sam
spirit of Gillan’s extension of the mean spherical approxim
tion for soft potentials@15# and subsequent elaborations b
Rosenfeld@16#.

We found it useful to recast the ORPA equations in t
framework of the generating functionals for the integ
equations of the theory of liquids@17#. We show that the two
different first order expansions of the free energy functio
corresponding to the well-known Gibbs-Bogolioubov a
Weeks-Chandler and Andersen approximations for the
energy @18# can be transformed into two closely relate
460 © 1998 The American Physical Society
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57 461OPTIMIZED RANDOM-PHASE APPROXIMATIONS FOR . . .
forms of the ORPA by addition of the same functional. T
resulting correlation functions differ by the choice of th
reference system pair correlation function.

Moreover, we are able to show that our condition for
continuous ORPA correction to the pair correlations
equivalent to an extremum condition for the ORPA gene
ing functional. Since only the variational determination of
the free parameters of the functional allows the identificat
of its value with the Helmoltz free energy, this choice e
forces the thermodynamic consistence in a natural way.

The paper is organized as follows. In Sec. II, we sh
how two versions of the ORPA differing only in the trea
ment of the reference system correlations can be obta
from a variational problem for two related functionals.
Sec. III we show that it is possible to define a consist
ORPA for continuous potentials and that such an extensio
equivalent to an additional requirement of extremum for
ORPA functionals. In Sec. IV the issue of the thermod
namic consistency of the two approximations is briefly d
cussed. Conclusions are summarized in Sec. V.

II. TWO GENERATING FUNCTIONALS FOR THE ORPA

The starting point of the ORPA is a suitable decompo
tion of the interatomic potentialf(r ) into a reference poten
tial f0(r ) and a perturbation~the rest! f1(r ):

f~r !5f0~r !1f1~r !. ~1!

Although the original ORPA@1# was based on a specifi
choice of such a decomposition, in the following discuss
we temporarily leave unspecified the exact characteriza
of f0(r ). Equation~1! naturally leads to a similar decompo
sition of the total and the direct correlation functionsh(r )
andc(r ):

h~r !5h0~r !1Dh~r !, ~2!

c~r !5c0~r !1Dc~r !, ~3!

where h0(r ) and c0(r ) are the correlation functions of
reference fluid whose particles interact via the poten
f0(r ). The thermodynamics and the correlation functions
the reference system are considered as known quant
Dh(r ) andDc(r ) are defined by Eqs.~2! and~3! and are the
unknown functions of the theory. A relation among them,
a fluid whose number density isr, is provided by the
Ornstein-Zernike equation

h~r !5c~r !1rE d3r 8h~r 8!c~ ur2r 8u!, ~4!

which, taking into account the fact thath0(r ) andc0(r ) do
satisfy the same equation, results in the following relat
between the Fourier transforms ofDh(r ) andDc(r ):

Dĥ~q!5
D ĉ~q!S0

2~q!

12rD ĉ~q!S0~q!
. ~5!

In formula ~5!, S0(q)511rĥ0(q) is the structure factor
of the reference system. A caret on a function ofq indicates
t-
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the three-dimensional Fourier transforms of the correspo
ing function defined in ther space, whiler is the number
density of the system.

So far no approximation has been introduced. By comp
menting Eq. ~5! with any approximate relation betwee
Dh(r ), Dc(r ), andf1(r ) we get a closed set of nonlinea
integral equations that has to be solved.

In particular, the ORPA closure corresponds to the d
relations:

Dc~r !52bf1~r ! for r .s, ~6!

Dh~r !50 for r ,s. ~7!

These equations impose, up to the finite crossover
tances, the matching of the asymptotic long range behav
of Dc(r ) @Eq. ~6!# and the condition that the approximatio
would not modify the pair correlation function at short di
tances@Eq. ~7!#. Due to the presence of relation~5! one could
use as an independent variable either the values ofDh(r ) at
distances beyonds or, more conveniently, the values of th
function x(r )5Dc(r ) for r ,s (x(r )50 for r .0).

It is easy to show that Eq.~7! corresponds to the extre
mum condition for the following functional@1,17# of x(r ):

FRING@x~r !#5
1

2~2p!3r
E d3q$ ln@11S0~q!p~q!#

2p~q!S0~q!%, ~8!

where p(q)5r@bf̂1(q)2x̂(q)#. In a diagrammatic treat-
ment,FRING would correspond to the sum ofring-like dia-
grams and, as is well known,x(r )50 corresponds to the
random phase approximation, which usually violates the c
condition ~7!. The ORPA enforces such a condition.

Indeed, by taking the functional derivative with respect
D ĉ(q) we have

dFRING

dD ĉ~q!
5

r

~2p!3
Dĥ~q! ~9!

and Fourier transforming to ther space we get for all the
values ofr :

dFRING

dDc~r !
5Dh~r !. ~10!

For 0,r ,s, Eq. ~10! becomes an integral equation fo
the unknownx(r ), different from zero only in such a region

dFRING

dx~r !
50 for r ,s. ~11!

Thus, Eq.~11! is equivalent to imposing an extremum
condition on FRING with respect to variations o
Dc(r )5x(r ) ~inside s). If the reference potential is suc
thatg0(r ) insides is zero, we see that the extremum cond
tion is equivalent to the physical requirement that the size
the exclusion hole of the reference system is preserved by
perturbation.
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It is quite easy to verify that the solution of Eq.~7!, pro-
vided it exists, is actually unique and corresponds to
maximum of the ORPA generating functional@14# ~8!.

To complete the description of the system, an expl
prescription for the reference system pair correlation fu
tion g0(r ) is required. In the usual approach to ORPA, t
choice ofg0(r ) is treated as a separate step. Here we pr
to define a ‘‘total’’ generating functional from which the fu
ORPA g(r ) is derived. Actually we can introduce two func
tionals having bothFRING as a generator of the ‘‘ORPA’
contribution to the pair correlations and differing in the r
sulting g0.

For a homogeneous liquid interacting through a pair
tential f, the Helmoltz free energy per particleF can be
considered@18# a functional off(r ) as well as a functiona
of the functione(r )5e2bf(r ). It is easy to show that

dbF

dbf~r !
5

r

2
g~r ! ~12!

and that

dbF

de~r !
52

r

2
y~r !, ~13!

where y(r ) is the so-called cavity correlation functio
@y(r )5g(r )ebf(r )#. We introduce two functionals —
FGB@f# andFWCA@e# — as follows:

FGB@f#5
r

2E drg0~r !bDf~r !

2
1

2rS 1

2p D 3E dq$p~q!S0~q!

2 ln@11p~q!S0~q!#%, ~14!

FWCA@e#52
r

2E dry0~r !De~r !

2
1

2rS 1

2p D 3E dq$p~q!S0~q!

2 ln@11p~q!S0~q!#%, ~15!

whereDf(r )5f(r )2f0(r ) andDe(r )5e(r )2e0(r ).
By functional differentiation ofFGB andFWCA with re-

spect tobf(r ) ande(r ), respectively, we get

g5g01Dh~r ! ~16!

and

y5y01ebfDh~r !. ~17!

From the last equation we get immediately theg(r ) resulting
from FWCA as

g5y0e2bf~r !1Dh~r !. ~18!

Thus, the functionalsFGB and FWCA are such that the
deviation from the reference system pair correlation funct
is always given by the ORPA approximationDh(r ) @Eq.
e

it
-

er

-

n

~5!#, but the reference system pair correlation function isg0
in one case andy0e2bf in the other case. Due to the form o
the reference system pair correlation functions and the
responding generating functionals, we refer to the form
approximation as the Gibbs-Bogoliubov ORPA~GB-ORPA!
and to the latter as the Weeks-Chandler-Andersen OR
~WCA-ORPA!.

Notice that at this level the two functionals have be
introduced just as generating functionals for the pair corre
tion functions and we are not allowed yet to identify th
values of the two functionals at the extremum with the H
moltz free energy.

III. ORPA FOR CONTINUOUS POTENTIALS

For a general value of the parameters, the solutionx(r )
of Eq. ~11! and the resultingDh(r ) are discontinuous ats no
matter if the reference system potential is continuous or n
While such a discontinuity looks relatively harmless if th
referenceg0(r ) has a hard core of diameters, a discontinu-
ity in Dh(r ) would be spurious in connection with a contin
ous reference system.

For a similar problem, occurring in the case of the me
spherical approximation~MSA!, a satisfactory solution was
found @15# by determinings in such a way that the resultin
correlation functions were continuous ats. Also in the con-
text of the different but related soft-MSA closure@19#,
Nartenet al. @20# proposed a similar criterion for the dete
rmination ofs.

Here, we can similarly impose the continuity ofDh(r ) @or
equivalentlyDc(r )# at r 5s. Thus, we add the condition

Dh~s1!50 ~19!

as an additional equation fors.
Moreover, still in analogy with the MSA case, we ca

prove that the continuity condition ats is equivalent to an
extremum condition of the ORPA functional~8! as a func-
tion of s.

As shown in the Appendix we have

]FORPA/]s52prs2x2~s2!. ~20!

Thus, the continuity condition on the correlation functio
implies that the GB-ORPA and WCA-ORPA functiona
have an extremum~inflection point! at s. As we will discuss
in the next section, this extremum condition is also the c
for a thermodynamic consistent theory.

Here we just notice that there is a manifold of solutions
Eq. ~19!. However, a lower limit fors is given by the size of
the excluded volume region of the reference system. Tha
the region such that

g~r !'0. ~21!

A choice ofs smaller than the reference system exclus
hole would result again in an unphysical ORPAg(r ). On the
other hand, sinceFWCA andFGB are increasing functions o
s @Eq. ~20!#, the minimum value will be achieved for th
first value ofs larger than the reference system exclusi



-
el

i

o
ns
er
e
e
is

ls
-
n
e

m
c
la
i
b

.
nc
ai

th
io

are
a-
all
ft to
o-

the
t of
ture
, the

n of

the
la-
in

e-

eal
in-

of
he
ltz
re-

th

eral
ndi-
he

is
the

c-
nd
a

o-
ed
his
ant
the

s.
ic
r-
a-

57 463OPTIMIZED RANDOM-PHASE APPROXIMATIONS FOR . . .
hole. Moreover, increasings, the size of the ORPA correc
tion to the reference system thermodynamics and corr
tions rapidly decreases.

IV. GENERATING FUNCTIONALS AND
THERMODYNAMIC CONSISTENCE

Now we are in the position to discuss the thermodynam
interpretation of the functionalsFGB andFWCA and the spe-
cific issue of the thermodynamic consistency.

It is well known that approximate integral equation the
ries for the correlation functions show quantitative violatio
of fundamental thermodynamic equalities. In particular, h
we are concerned with the equalities generated by the id
tification of the generating functional with the Helmoltz fre
energy per particlef . The most obvious of such equalities
the equality between the pressurep obtained from the free
energy per particlef ,

bp

r
5r

]~b f !

r
~22!

and that found through the virial theorem,

bp

r
512

1

6
rE g~r !rbf8~r !dr . ~23!

A necessary condition to ensure that a functionalF@f# is
actually a free energy functional is the validity of Eq.~12!
@or ~13!# @21,22#.

Such a condition would be fulfilled by the functiona
defined in Eqs.~14! and~15! if the dependence of such func
tionals on all the parameters of the reference system, os
~say ai) and onDx vanishes. Then we have to satisfy th
following equations:

]F

]ai
50, ~24!

]F

]s
50, ~25!

dF

dx~r !
50. ~26!

Equation~26! corresponds to the ORPA formula@7# while
Eq. ~24! is a way of determining the reference system para
eters. Equation~25!, as we have shown in the previous se
tion, is also related to the continuity of the resulting corre
tion functions. Therefore, in order to have thermodynam
consistency we have to ensure that the functional would
an extremum with respect to variations ofall the parameters
An analogous requirement for the choice of the refere
system in connection with the modified hypernetted ch
approximation~MHNC! was derived by Ladoet al. @10#.
Even closer to the present problem is the analysis of
choice of the reference system within the WCA perturbat
theory provided by Lado@23#.
a-
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Different choices of the reference system parameters
certainly conceivable and actually this is the existing situ
tion. It is not easy to anticipate what is the best choice for
possible systems and a final assessment should be le
explicit numerical investigations. However, here we can n
tice that only the choices corresponding to extrema of
generating functionals or choices completely independen
the thermodynamic state would ensure the free energy na
of the generating functionals and then, as a consequence
consistence of the energy and virial routes to the equatio
state.

V. CONCLUSIONS

In the present paper we have rephrased the ORPA in
language of the generating functionals for the pair corre
tion function. In this way we could easily obtain three ma
results:

~1! We can derive from a unified treatment the two pr
scriptions for the reference systemg(r ) present in the litera-
ture @Eqs.~16! and ~18!#.

~2! We can show how the ORPA can be extended to d
with continuous reference system interactions, potentially
creasing the range of applicability of this approximation.

~3! We show that the closure equations, the removal
the discontinuity in the resulting pair correlations and t
identification of the generating functionals with the Helmo
free energy can be reduced to the unique and unifying
quirement of a variational principle on the functionals wi
respect to all the independent variables and parameters.

The theory presented in this paper provides a gen
scheme corresponding to many possible choices for the i
vidual ingredients of the ORPA. Actually, depending on t
reference system and on the flavor of the ORPA~GB or
WCA!, we have introduced different possibilities. For th
reason we postpone detailed numerical investigations to
application of the approximation to specific problems.

Taking into account the already satisfactory level of a
curacy of the standard implementations of the ORPA, a
judging from preliminary calculations, we can anticipate
good quality of the numerical results. In particular therm
dynamical investigations could now benefit from the clarifi
status of thermodynamic consistency in the ORPA. In t
respect, we believe that the ORPA could play an import
role as one of the best candidates for the investigation of
fluid phase diagrams.
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APPENDIX

The proof of Eq.~20! is given as follows. Let

p~q!5brf̂1~q!2rx̂~q!. ~A1!
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Since the only dependence ofFWCA or FWCA on s is
through x, the derivative ofFRING @Eq. ~8!#, we have to
evaluate

]FRING

]s
5

1

2rS 1

2p D 3E dq@S0~q!2S~q!#
]p~q!

]s

52
r

2S 1

2p D 3E dqDĥ~q!
]x̂~q!

]s
. ~A2!

Now, taking into account the finite support ofx(r ),

]x̂~q!

]s
5

4p

q
sx~s2!sin~qs!1E

0

s

r
]x~s!

]s

4p

q
sin~qr !dr.

By using Parseval’s equality, Eq.~A2! becomes
hy

hy

J.
]FRING

]s
52

r

2E drDh~r !
]x~r !

]s
2

r

2S 1

2p D 3

~4p!2

3E
0

`

qDĥ~q!sx~s!sin~qs!dq . ~A3!

The first term in Eq.~A3! is zero because whenDhÞ0, the
other term is zero and the reverse also follows. Equat
~A3! eventually reduces to

]FRING

]s
522prs2x~s2!Dh~s1!522prs2x2~s2!,

~A4!

giving Eq. ~20! when we take into account thatFRING ap-
pears in Eqs.~14! and ~15! with a negative sign.
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